Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A circadian rhythm-regulated tomato gene is induced by Arachidonic acid and Phythophthora infestans infection.

Identifieur interne : 002098 ( Main/Exploration ); précédent : 002097; suivant : 002099

A circadian rhythm-regulated tomato gene is induced by Arachidonic acid and Phythophthora infestans infection.

Auteurs : Philip D. Weyman [États-Unis] ; Zhiqiang Pan ; Qin Feng ; David G. Gilchrist ; Richard M. Bostock

Source :

RBID : pubmed:16361525

Descripteurs français

English descriptors

Abstract

A cDNA clone of unknown function, DEA1, was isolated from arachidonic acid-treated tomato (Solanum lycopersicum) leaves by differential display PCR. The gene, DEA1, is expressed in response to the programmed cell death-inducing arachidonic acid within 8 h following treatment of a tomato leaflet, 16 h prior to the development of visible cell death. DEA1 transcript levels were also affected by the late blight pathogen, Phytophthora infestans. To gain further insight into the transcriptional regulation of DEA1, the promoter region was cloned by inverse PCR and was found to contain putative stress-, signaling-, and circadian-response elements. DEA1 is highly expressed in roots, stems, and leaves, but not in flowers. Leaf expression of DEA1 is regulated by circadian rhythms during long days with the peak occurring at midday and the low point midway through the dark period. During short days, the rhythm is lost and DEA1 expression becomes constitutive. The predicted DEA1 protein has a conserved domain shared by the eight-cysteine motif superfamily of protease inhibitors, alpha-amylase inhibitors, seed storage proteins, and lipid transfer proteins. A DEA1-green fluorescent protein fusion protein localized to the plasma membrane in protoplasts and plasmolysis experiments, suggesting that the native protein is associated with the plasmalemma in intact cells.

DOI: 10.1104/pp.105.068874
PubMed: 16361525
PubMed Central: PMC1326047


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A circadian rhythm-regulated tomato gene is induced by Arachidonic acid and Phythophthora infestans infection.</title>
<author>
<name sortKey="Weyman, Philip D" sort="Weyman, Philip D" uniqKey="Weyman P" first="Philip D" last="Weyman">Philip D. Weyman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, University of California, Davis, California 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of California, Davis, California 95616</wicri:regionArea>
<wicri:noRegion>California 95616</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pan, Zhiqiang" sort="Pan, Zhiqiang" uniqKey="Pan Z" first="Zhiqiang" last="Pan">Zhiqiang Pan</name>
</author>
<author>
<name sortKey="Feng, Qin" sort="Feng, Qin" uniqKey="Feng Q" first="Qin" last="Feng">Qin Feng</name>
</author>
<author>
<name sortKey="Gilchrist, David G" sort="Gilchrist, David G" uniqKey="Gilchrist D" first="David G" last="Gilchrist">David G. Gilchrist</name>
</author>
<author>
<name sortKey="Bostock, Richard M" sort="Bostock, Richard M" uniqKey="Bostock R" first="Richard M" last="Bostock">Richard M. Bostock</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16361525</idno>
<idno type="pmid">16361525</idno>
<idno type="doi">10.1104/pp.105.068874</idno>
<idno type="pmc">PMC1326047</idno>
<idno type="wicri:Area/Main/Corpus">002195</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002195</idno>
<idno type="wicri:Area/Main/Curation">002195</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002195</idno>
<idno type="wicri:Area/Main/Exploration">002195</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A circadian rhythm-regulated tomato gene is induced by Arachidonic acid and Phythophthora infestans infection.</title>
<author>
<name sortKey="Weyman, Philip D" sort="Weyman, Philip D" uniqKey="Weyman P" first="Philip D" last="Weyman">Philip D. Weyman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, University of California, Davis, California 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of California, Davis, California 95616</wicri:regionArea>
<wicri:noRegion>California 95616</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pan, Zhiqiang" sort="Pan, Zhiqiang" uniqKey="Pan Z" first="Zhiqiang" last="Pan">Zhiqiang Pan</name>
</author>
<author>
<name sortKey="Feng, Qin" sort="Feng, Qin" uniqKey="Feng Q" first="Qin" last="Feng">Qin Feng</name>
</author>
<author>
<name sortKey="Gilchrist, David G" sort="Gilchrist, David G" uniqKey="Gilchrist D" first="David G" last="Gilchrist">David G. Gilchrist</name>
</author>
<author>
<name sortKey="Bostock, Richard M" sort="Bostock, Richard M" uniqKey="Bostock R" first="Richard M" last="Bostock">Richard M. Bostock</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arachidonic Acid (pharmacology)</term>
<term>Cell Membrane (metabolism)</term>
<term>Circadian Rhythm (genetics)</term>
<term>DNA, Complementary (genetics)</term>
<term>DNA, Complementary (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Immunity, Innate (MeSH)</term>
<term>Lycopersicon esculentum (drug effects)</term>
<term>Lycopersicon esculentum (genetics)</term>
<term>Lycopersicon esculentum (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oomycetes (pathogenicity)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Proteins (biosynthesis)</term>
<term>Plant Proteins (genetics)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Recombinant Fusion Proteins (metabolism)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (génétique)</term>
<term>ADN complémentaire (métabolisme)</term>
<term>Acide arachidonique (pharmacologie)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Immunité innée (MeSH)</term>
<term>Lycopersicon esculentum (effets des médicaments et des substances chimiques)</term>
<term>Lycopersicon esculentum (génétique)</term>
<term>Lycopersicon esculentum (métabolisme)</term>
<term>Maladies des plantes (génétique)</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Oomycetes (pathogénicité)</term>
<term>Protéines de fusion recombinantes (métabolisme)</term>
<term>Protéines végétales (biosynthèse)</term>
<term>Protéines végétales (génétique)</term>
<term>Rythme circadien (génétique)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Complementary</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA, Complementary</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Arachidonic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Lycopersicon esculentum</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Lycopersicon esculentum</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Circadian Rhythm</term>
<term>Lycopersicon esculentum</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Lycopersicon esculentum</term>
<term>Maladies des plantes</term>
<term>Protéines végétales</term>
<term>Rythme circadien</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Lycopersicon esculentum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Lycopersicon esculentum</term>
<term>Membrane cellulaire</term>
<term>Protéines de fusion recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide arachidonique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Immunity, Innate</term>
<term>Molecular Sequence Data</term>
<term>Promoter Regions, Genetic</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Alignment</term>
<term>Sequence Analysis, DNA</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de séquence d'ADN</term>
<term>Données de séquences moléculaires</term>
<term>Gènes de plante</term>
<term>Immunité innée</term>
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A cDNA clone of unknown function, DEA1, was isolated from arachidonic acid-treated tomato (Solanum lycopersicum) leaves by differential display PCR. The gene, DEA1, is expressed in response to the programmed cell death-inducing arachidonic acid within 8 h following treatment of a tomato leaflet, 16 h prior to the development of visible cell death. DEA1 transcript levels were also affected by the late blight pathogen, Phytophthora infestans. To gain further insight into the transcriptional regulation of DEA1, the promoter region was cloned by inverse PCR and was found to contain putative stress-, signaling-, and circadian-response elements. DEA1 is highly expressed in roots, stems, and leaves, but not in flowers. Leaf expression of DEA1 is regulated by circadian rhythms during long days with the peak occurring at midday and the low point midway through the dark period. During short days, the rhythm is lost and DEA1 expression becomes constitutive. The predicted DEA1 protein has a conserved domain shared by the eight-cysteine motif superfamily of protease inhibitors, alpha-amylase inhibitors, seed storage proteins, and lipid transfer proteins. A DEA1-green fluorescent protein fusion protein localized to the plasma membrane in protoplasts and plasmolysis experiments, suggesting that the native protein is associated with the plasmalemma in intact cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16361525</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>04</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>140</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2006</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>A circadian rhythm-regulated tomato gene is induced by Arachidonic acid and Phythophthora infestans infection.</ArticleTitle>
<Pagination>
<MedlinePgn>235-48</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A cDNA clone of unknown function, DEA1, was isolated from arachidonic acid-treated tomato (Solanum lycopersicum) leaves by differential display PCR. The gene, DEA1, is expressed in response to the programmed cell death-inducing arachidonic acid within 8 h following treatment of a tomato leaflet, 16 h prior to the development of visible cell death. DEA1 transcript levels were also affected by the late blight pathogen, Phytophthora infestans. To gain further insight into the transcriptional regulation of DEA1, the promoter region was cloned by inverse PCR and was found to contain putative stress-, signaling-, and circadian-response elements. DEA1 is highly expressed in roots, stems, and leaves, but not in flowers. Leaf expression of DEA1 is regulated by circadian rhythms during long days with the peak occurring at midday and the low point midway through the dark period. During short days, the rhythm is lost and DEA1 expression becomes constitutive. The predicted DEA1 protein has a conserved domain shared by the eight-cysteine motif superfamily of protease inhibitors, alpha-amylase inhibitors, seed storage proteins, and lipid transfer proteins. A DEA1-green fluorescent protein fusion protein localized to the plasma membrane in protoplasts and plasmolysis experiments, suggesting that the native protein is associated with the plasmalemma in intact cells.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Weyman</LastName>
<ForeName>Philip D</ForeName>
<Initials>PD</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of California, Davis, California 95616, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pan</LastName>
<ForeName>Zhiqiang</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Qin</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gilchrist</LastName>
<ForeName>David G</ForeName>
<Initials>DG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bostock</LastName>
<ForeName>Richard M</ForeName>
<Initials>RM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AY509122</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>12</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YG812J1I</RegistryNumber>
<NameOfSubstance UI="D016718">Arachidonic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016718" MajorTopicYN="N">Arachidonic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002940" MajorTopicYN="N">Circadian Rhythm</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009868" MajorTopicYN="Y">Oomycetes</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>4</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16361525</ArticleId>
<ArticleId IdType="pii">pp.105.068874</ArticleId>
<ArticleId IdType="doi">10.1104/pp.105.068874</ArticleId>
<ArticleId IdType="pmc">PMC1326047</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:545-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1981 Apr 3;212(4490):67-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17747631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Mar;9(3):297-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9090876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Jun 5;231(3):877-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8515457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Dec 15;290(5499):2110-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Oct;85(19):7089-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2902624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2003 Sep;25(9):888-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12938178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2004 May;42(5):355-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15191737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3162770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2122-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9122158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jan;56(411):417-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15569704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):961-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6957-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11381106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1980 Oct 10;8(19):4321-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7433111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Feb;29(3):295-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11844107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2004 Mar;6(3):201-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14764104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Feb;218(4):552-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14614626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1995 Jun;7(6):913-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7599651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Oct;40(1):47-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15361140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 May;104(6-7):1125-1131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):383-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12520028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 1995 Feb;3(2):72-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7728389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Dec;4(6):983-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8281190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2001 Nov;17(11):611-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11672843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 Jan;42(1):9-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Dec;44(6):777-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11202439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Mar;8(3):375-391</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1996 Jul;31(4):819-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8806412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1989 Dec;180(1):5-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24201838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Apr;9(4):491-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9144958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 May;5(5):199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10785665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1984 Aug;38(1):5-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6088076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 Sep;12(3):669-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9351251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Aug;55(6):763-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2003 Dec 8;22(56):9030-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14663481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Aug 14;257(5072):967-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1354393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1998;36:393-414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Feb;10(2):88-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15217-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12403830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Aug;126(4):1637-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6025-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8650213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Feb;13(2):413-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Apr;34(2):217-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12694596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2565-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Aug;5(4):318-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12179965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 May;129(1):156-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Biol. 1990;6:247-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2275815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Oct;17(10):1051-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15497398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Feb;18(4):749-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1558948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Mar;98(3):995-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jun;120(2):473-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10364398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Nov;97(3):900-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):732-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Mar 25;17(6):2362</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2468132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1990 May;2(5):369-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2152164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Jul 1;21(13):2933-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860560</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bostock, Richard M" sort="Bostock, Richard M" uniqKey="Bostock R" first="Richard M" last="Bostock">Richard M. Bostock</name>
<name sortKey="Feng, Qin" sort="Feng, Qin" uniqKey="Feng Q" first="Qin" last="Feng">Qin Feng</name>
<name sortKey="Gilchrist, David G" sort="Gilchrist, David G" uniqKey="Gilchrist D" first="David G" last="Gilchrist">David G. Gilchrist</name>
<name sortKey="Pan, Zhiqiang" sort="Pan, Zhiqiang" uniqKey="Pan Z" first="Zhiqiang" last="Pan">Zhiqiang Pan</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Weyman, Philip D" sort="Weyman, Philip D" uniqKey="Weyman P" first="Philip D" last="Weyman">Philip D. Weyman</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002098 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002098 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16361525
   |texte=   A circadian rhythm-regulated tomato gene is induced by Arachidonic acid and Phythophthora infestans infection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16361525" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024